
Nabla	containers:	
a	new	approach	to	
container	isolation
Brandon	Lum,	Ricardo	Koller ,	Dan	Williams,	
Sahil Suneja

IBM	Research
https://nabla-containers.github.io	

Kubecon China	2018

Containers	are	not	securely	Isolated

2

Containers	are	not	securely	Isolated

3

- What	does	this	exactly	mean?

- Why	are	VMs	considered	secure	but	not	
containers?

- How	do	we	improve	container	isolation?

Overview

• Threat	Model:	Isolation
• Isolation	through	surface	reduction
• Our	approach:	Nabla
• Measuring	Isolation
• Nabla vs	VMs?

4

What	does	it	mean	to	be	isolated?

• Containers	that	are	co-located	
should	not	be	able	to	access	data	
of	another

• Scenarios:
• Horizontal	attacks	from	vulnerable	
services

• Container-native	multi-tenant	cloud

Kernel

attacker

Service
A

secret

containers

Container	Isolation	Reality
• Containers	==	namespaced
processes	à Kernel	exploits	mostly	
work

• Sep	2018:	CVE-2018-14634
• DirtyCOW (CVE-2016-5195)
• Many	more	(CVE	database),	
2018:	Codexec (3),	Mem.	Corrupt	(8)

• Horizontal	attack	possible	via	
shared	privileged	component	
(kernel) Kernel

attacker

Service
A

secret

containers

attacker

Exploit
via	
syscalls

DirtyCOW

• DityCow Exploit	Sketch:
• mmap a	page
• Create	a	thread	that	invokes	
madvise

• Create	a	thread	that	invokes	
Read/Write procfs

• Triggers	race	condition	in	Kernel	
Mem.	management	code

// FROM: https://dirtycow.ninja/

map=mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE
,f,0); printf("mmap %zx\n\n",(uintptr_t) map);

/* You have to do it on two threads. */
pthread_create(&pth1,NULL,madviseThread,argv[1
]); //madvise
pthread_create(&pth2,NULL,procselfmemThread,ar
gv[2]);
// R/W procfs

/* You have to wait for the threads to finish.
*/ pthread_join(pth1,NULL);
pthread_join(pth2,NULL); return 0;

7

Container	Isolation	Reality

Kernel

attacker

Service
A

secret

containers

attacker

Application

Kernel

Kernel	Footprint

>	300	Syscalls

disk

FS

• Exploits	target	vulnerable	part	of	
kernel	via	syscalls.	

• If	we	restrict	the	number	of	syscalls
• à Less	reachable	kernel	functions
• à Less	potential	vulnerabilities
• à Less	possible	exploits

Application

Kernel

Docker	Default	Seccomp Policy

~	280	Syscalls

disk

FS

• Docker	default	seccomp policy	
• disables	around	44	system	calls	out	
of	300+.

• Generic	seccomp policies	– hard	to	
create	s.t. it	is	secure	

• Syscall profiling	is	mostly	heuristic	
based

44	Syscalls
seccomp (Whitelisting	policy)

Greyed	– unreachable	functions

Application

Kernel

Nabla

7	Syscalls

disk

FS

• Deterministic and	generic
seccomp policy	

• Only	7	syscalls!
• Uses	LibOS techniques

seccomp
LibOS

Original	300+	Syscall interface*

Nabla

• Taking	unikernel ideas	and	putting	it	into	
containers

• Using	tools/technologies	from	the	
rumprun and	solo5	community

• Modify	unikernel to	work	as	a	process

12

“Unikernels as	Processes”
(ACM	SoCC ’18)

(https://dl.acm.org/citation.cfm?id=3267845)

Making	and	running	a	Nabla

• Build	app.
with	custom
build	process*

• Nabla runtime,	
runnc loads	the	
nabla binaries	
and	sets	up	
seccomp
profiles

13

Application

7	Syscalls

seccomp
LibOS

*current	limitation	of	build	process,	we	are	investigating	ways	to	consider	removing	a	custom	build	process

Application

>	300	Syscalls
Build	process* Nabla

Binary

Container	Runtime

runc

Application Application

runnc

Application

7	Syscalls

seccomp

LibOS

Application

7	Syscalls

seccomp

LibOS

Demo

14

strace/ftracemeasurements	(Low	is	good)

15

Application

Kernel

>	300	Syscalls

disk

FS

ftracemeasures	number	of	
boxes	touched.

strace
measures	
syscalls
invoked.

ftracemeasurements	(lower	is	better)

16

Kata-containers	(VMs)

Nabla

What	does	this	say	about
our	isolation	vs	VMs?

Have	we	surpassed	VM	isolation?

• We	explored	and	contested	this	idea	in	our	paper:	

“Say	Goodbye	to	Virtualization	for	a	Safer	Cloud”	
(USENIX	HotCloud 2018)

(https://www.usenix.org/conference/hotcloud18/presentation/williams)

• Maybe… But	several	questions:
• Implementation	specific	comparisons?	KVM	vs	other	hypervisors
• Hardware	inclusive	threat	model	(Spectre/Meltdown,	etc.)
• Other	metrics

17

What’s	Next?	

• We	want	to	engage	the	community:

• Development	work	for	runnc/nabla-base-build/nabla-demo-apps
• Remove	need	to	rebuild	nabla containers	(Support	for	dynamic	linking	LibOS)
• Create	new	images	and	more	language	support	for	applications

• Chime	in	on	Improving	Security	Analysis/Metrics
• https://github.com/nabla-containers/nabla-measurements

18

19

Thank	You!
https://nabla-containers.github.io

Brandon	Lum (@lumjjb)	– BRANDON.LUM@ibm.com

#NablaContainers

Backup

20

ftracemeasurements	(lower	is	better)

21

Application

Kernel

>	300	Syscalls

disk

FS

Measuring	number	of	boxes
Touched.

Throughput	(higher	is	better)

22

Demo

23

Container	Runtime

Kubelet

containerd

CNI	Plugin

Cri-containerd

CRI

CNI runnc

IMAGE	REGISTRY

Image	pull	(OCI	image	spec)

Run	Container
(OCI	Runtime	Spec)

Other	Config
from	podSpec
i.e.	mounts,	security,	etc.

runc

Inside	a	Nabla container

• Unmodified	user	code	(e.g.,	Node.js,	
redis,	nginx,	etc.)

• Rumprun library	OS
• Unmodified	NetBSD code	+	some	glue
• Runs	on	thin	Solo5	unikernel interface

• Nabla Tender
• Setup	of	seccomp policy
• Translates	Solo5	calls	to	system	calls

Libc

Rumprun glue

NetBSD

Solo5

FS
TCP/IP

…

Application

𝛁 Tender

Original	
Container

Backup:	Containers	vs	VMs

25

Overview

• Threat	Model:	Isolation
• What	makes	VMs	isolated?
• Nabla:	How	do	we	get	those	isolation	properties	without	overhead?

26

Disclaimer:	In	this	talk,	we	are	doing	a	1:1	comparison.	Defense	in	
depth	is	a	valid	discussion	with	a	different	set	of	trade-offs.

Containers																																		VMs

27

Hypervisor	(+	Host	Kernel	(root))

Guest	
OS ☠

Host	Kernel

Pro-
cess ☠

High	Level	- Syscalls:
Filesystem	interface,	
socket	interface,	
etc.

Low	Level	– VT:
Block	Dev.	Interface,
TAP	interface,
etc.

Containers																																		VMs

28

Infra

Interface

FS

Guest
Application Process

disk

A	LOT	more	
exploitable	code	in	
the	infrastructure!!!

Infra

Interface

Guest .
OS .

disk

FS

Lower level interface

Less code

Fewer vulnerabilities

Stronger isolation

30

Kernel	functions	accessed	by	applications

• Compared	to	standard	
containers

• 5-6x	less	kernel	functions	
accessed

• 8-14x	fewer	syscalls

• About	half	the	number	
of	kernel	functions	
accessed	as	VMs!

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

nginx
nginx-large

node-express

redis-get

redis-set

U
ni

qu
e

ke
rn

el
fu

nc
tio

ns
 a

cc
es

se
d process

ukvm
nabla

Container
VM

nabla

Accessible	kernel	functions	under	Nabla policy

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

U
ni

qu
e

ke
rn

el
 fu

nc
tio

ns

accept
nabla
block

 0

 30

 0 10

• Trinity	kernel	fuzz	
tester	to	try	to	access	
as	much	of	kernel	as	
possible

• Nabla policy	reduces	
amount	of	accessible	
kernel	functions	by	
98%

Unikernel isolation	comes	from	the	interface

• Direct	mapping	between	10	
hypercalls and	system	
call/resource	pairs

33

Hypercall
walltime

puts

poll

blkinfo

blkwrite

blkread

netinfo

netwrite

netread

halt

• 6	for	I/O
• Network:	packet	level
• Storage:	block	level

• vs.	>350	syscalls

System	Call Resource
clock_gettime

write stdout
ppoll net_fd

pwrite64 blk_fd
pread64 blk_fd

write net_fd
read net_fd
exit_group

SOCC

34

Implementation:	nabla 𝛁

35

• Extended	Solo5	unikernel
ecosystem	and	ukvm

• Prototype	supports:
• MirageOS
• IncludeOS
• Rumprun

• https://github.com/solo5/solo5

Measuring	isolation:	common	applications

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

nginx
nginx-large

node-express

redis-get

redis-set

U
ni

qu
e

ke
rn

el
fu

nc
tio

ns
 a

cc
es

se
d process

ukvm
nabla

36

• Code	reachable	
through	interface	is			
a	metric	for	attack	
surface

• Used	kernel	ftrace

• Results:
• Processes:	5-6x	more	
• VMs:	2-3x	more

Measuring	isolation:	fuzz	testing

37

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

U
ni

qu
e

ke
rn

el
 fu

nc
tio

ns

accept
nabla
block

 0

 30

 0 10

• Used	kernel	ftrace
• Used	trinity
system	call	fuzzer to	
try	to	access	more	of	
the	kernel

• Results:
• Nabla policy	reduces	
by	98%	over	a	
“normal”	process

Measuring	performance:	throughput

 80%

 100%

 120%

 140%

 160%

 180%

 200%

py_tornado

py_cham
eleon

node_fib

m
irage_H

TTP

py_2to3

node_express

nginx_large

redis_get

redis_set

includeos_TC
P

nginx

includeos_U
D

P

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

245

no I/O with I/O

ukvm
nabla
QEMU/KVM

38

• Applications	include:
• Web	servers
• Python	benchmarks
• Redis
• etc.	

• Results:
• 101%-245%	higher	
throughput	than	ukvm

Measuring	performance:	CPU	utilization

 0
 20
 40
 60
 80

 100
 120

(a
)

 C
PU

 %

 0
 20
 40
 60
 80

 100

(b
)

 V
M

ex
its

/m
s

 0

 0.5

 1

 1.5

 0 5000 10000 15000 20000
(c

)
 IP

C
 (i

ns
/c

yc
le

)
Requests/sec

nabla
ukvm

39

• vmexits have	an	effect	on	
instructions	per	cycle

• Experiment	with	MirageOS
web	server

• Results:
• 12%	reduction	in	cpu
utilization	over	ukvm

Measuring	performance:	startup	time

0

250

500

750

H
el
lo

w
or
ld

QEMU/KVM

0

10

20

30
ukvm

0

10

20

30
nabla

0

10

20

30
process

0

500

QEMU/KVM

ukvm

nabla

process

2 4 6 8 10 12 14 16
0

500

1000

1500

H
T
T
P

P
O
S
T

2 4 6 8 10 12 14 16
0

50

100

150

200

2 4 6 8 10 12 14 16

Number of cores

0

50

100

150

200

2 4 6 8 10 12 14 16
0

50

100

150

200

0 2 4 6 8 10 12 14

0

500

1000

1500

40

• Startup	time	is	important	
for	serverless,	NFV

• Results:
• Ukvm has	30-370%	higher	
latency	than	nabla

• Mostly	due	avoiding	KVM	
overheads

He
llo
	w
or
ld

HT
TP
	P
os
t

