Kubecon China 2018

Nabla containers:

d N

ew approact

CO

ntainer isolati

to
on

Brandon Lum, Ricardo Koller , Dan Williams,

SIS

IWEE

IBM Research

https://nabla-containers.github.io

Containers are not securely Isolated C

Containers are not securely Isolated C

- What does this exactly mean?

- Why are VMs considered secure but not
containers?

- How do we improve container isolation?

Overview

* Threat Model: Isolation

* |solation through surface reduction
e Our approach: Nabla

* Measuring Isolation

* Nabla vs VMs?

What does it mean to be isolated?

e Containers that are co-located
should not be able to access data
of another

e Scenarios:

 Horizontal attacks from vulnerable
services

e Container-native multi-tenant cloud

Service
A

containers

Kernel

\%

Container Isolation Reality

* Containers == namespaced containers

processes 2 Kernel exploits mostly / \

work

e Sep 2018: CVE-2018-14634 r--—---= === ==- |
e DirtyCOW (CVE-2016-5195) Service

* Many more (CVE database), A
2018: Codexec (3), Mem. Corrupt (8)

: Exploit
I via
I syscalls
I
I

secret

* Horizontal attack possible via
shared privileged component attacker
(kernel) Kernel

DirtyCOW

* DityCow Exploit Sketch:
° mmap a page
* Create a thread that invokes
madvise

 Create a thread that invokes
Read/Write procfs

* Triggers race condition in Kernel
Mem. management code

// FROM: https://dirtycow.ninja/

map= (NULL, st. st s ize, PROT_READ, MAP PRIVATE
,£,0); printf ("mmap %zx\n\n", (uintptr t) map);

/* You have to do it on two threads. */
pthread create (&pthl,NULL, madviseThread, argv([1l
s //

pthread create (&pth2,NULL, procselfmemThread, ar
gvl[2]);

//

/* You have to wait for the threads to finish.
*/ pthread join (pthl,NULL);
pthread join(pth2,NULL); return 0;

Container Isolation Reality

containers

Service
A

secret

|
|
|
|
|

s [
|

attacker

Kernel

Kernel Footprint V

Application

* Exploits target vulnerable part of
kernel via syscalls.

> 300 Syscalls
* |If we restrict the number of syscalls

* - Less reachable kernel functions
e - Less potential vulnerabilities

* - Less possible exploits

Kernel

Docker Default Seccomp Policy V

Application

* Docker default seccomp policy
» disables around 44 system calls out

of 300+.
seccomp (Whitelisting policy)
~ 280 Syscalls Mo IS * Generic seccomp policies — hard to

create s.t. it Is secure

* Syscall profiling is mostly heuristic
based

Greyed — unreachable functions

Kernel

Nabla

Application

LibOS

seccomp

7 Syscalls

Kernel

C—— O riginal 300+ Syscall interface™

* Deterministic and generic
seccomp policy

* Only 7 syscalls!
e Uses LibOS techniques

Nabla

“Unikernels as Processes”

(ACM SoCC’18)
(https://dl.acm.org/citation.cfm?id=3267845)

* Taking unikernel ideas and putting it into
containers

* Using tools/technologies from the
rumprun and solo5 community

* Modify unikernel to work as a process

Making and running a Nabla

* Build app. !
with custom :

|

|

Application

build process*

* Nabla runtime,
runnc loads the

nabla binaries %
and sets up

seccomp kubernetes
profiles

Container Runtime

*current limitation of build process, we are investigating ways to consider removing a custom build process

Application

seccomp

V Build process* 7 Syscalls
| wseals <’

[EEY
w

Demo

”I"In
= |l
{

< i

strace/ftrace measurements (Lowis good)

Unique syscalls accessed

12

10

docker
nabla

[
 I—

Unique kernel functions accessed

600

500

400

300

200

100

strace ...

. : Application
measures
syscalls
invoked.

________________________ | > 300 Syscalls

TORC [0/7)‘90‘ ftrace measures numberof ___ _ _

(0] — ———

boxes touched.

[EEY
(92}

ftrace measurements (lower is better)

»»»»»»»»»»»»»»» Kata-containers (VMs)

_ / What does this say about

our isolation vs VMs?

redis-test

[EEY
(o)}

Have we surpassed VM isolation?

* We explored and contested this idea in our paper:

“Say Goodbye to Virtualization for a Safer Cloud”
(USENIX HotCloud 2018)

(https://www.usenix.org/conference/hotcloud18/presentation/williams)

 Maybe... But several questions:
* Implementation specific comparisons? KVM vs other hypervisors
* Hardware inclusive threat model (Spectre/Meltdown, etc.)
e Other metrics

What’s Next?

* We want to engage the community:

* Development work for runnc/nabla-base-build/nabla-demo-apps
 Remove need to rebuild nabla containers (Support for dynamic linking LibOS)
* Create new images and more language support for applications

* Chime in on Improving Security Analysis/Metrics
e https://github.com/nabla-containers/nabla-measurements

[EEY
co

Thank You!

https://nabla-containers.github.io

Brandon Lum (@lumijjb) — BRANDON.LUM®@ibm.com

#NablaContainers Yy

Containers or virtual machines: Which is
more secure? The answer will surprise you

IBM's new Nabla containers are designed
for security first

Liz Rige Glurce
Nabla Container isolation looks nice & straghtiorward %0 me

Important restrictons 1o overcome Dut a promising aperoach from
M fcc joct)

- ol Quite & fow

9 Nabla-container hype i my leed, QOng 10 have 20 check It cun!

¢ Frank Denis G 1 A6
Nabla containers. & New aproach 1o comainer isclation bia
. . 1

Arnaud Glloarro ’ J
HOow 10 run & nabla container 7 |

Kelsey HighMower @ Cholaoy gl towes ul 16
F'm wpdating Kubarmetes e Mart Way and nabla containers am a strong

CANGICAtS 1O the container rurteme

19

Backup

N
s I

<.lli

Unique kernel functions accessed

ftrace measurements (lower is better)

Application

700

600

500

400

300

200

100

0

docker I

—_ gvisor B3 _
gvisor-kvm [J
kata [
nabla &3 —

node-express

redis-test

python-tornado

> 300 Syscalls

Measuring number of boxes
Touched.

N

1

Throughput in regs/sec

Throughput (higher is better)

B docker

B gvisor

[gvisor-kvm

[J kata
nabla-container
B nabla-raw

120,000 12,000
100,000 N 10,000 -
80,000) § 8,000 -
o
o
c
60,000) = 6,000
Q
=
g
40,000 : S 4,000
=
20,000 h 2,000 |
0 0

redis-bench-get redis-bench-set

python-tornado

node-express

Demo

IMAGE REGISTRY

Kubelet Image pull (OCl image spec)

CRI .
containerd

Cri-containerd

CNI
Container Runtime

CNI Plugin

kubernetes

N
w

\%

Original
Container

Inside a Nabla container

Application

-~

* Unmodified user code (e.g., Node.js,
redis, nginx, etc.)

* Rumprun library OS NetBSD
 Unmodified NetBSD code + some glue TCP/IP
e Runs on thin Solo5 unikernel interface FS

Rumprun glue

e Nabla Tender

e Setup of seccomp policy
* Translates Solo5 calls to system calls V Tender

Solo5

Backup: Containers vs VMs

Overview

* Threat Model: Isolation
* What makes VMs isolated?
* Nabla: How do we get those isolation properties without overhead?

Disclaimer: In this talk, we are doing a 1:1 comparison. Defense in
depth is a valid discussion with a different set of trade-offs.

Contaliners

8

JamE High Level - Syscalls:
d Filesystem interface,
docker socketinterface,
etc.

Hypervisor (+ Host Kernel (root))

Kv M Low Level - VT:
Block Dev. Interface,
W TAP interface,

| etc.

N
~N

Contaliners

: Guest :
. Application Process

A LOT more
exploitable code in
the infrastructure!!!

N
o0

30

Kernel functions accessed by applications

1600
1400
1200
1000
800
600
400
200
0

Unigue kernel
functions accessed

iy, ", ,

Q Q
o P S

Container NN
vV
nabla]

9@;

/70 Q. 'Qpy.
Q6. Ys. Ys. Se
/

 Compared to standard
containers

* 5-6x less kernel functions
accessed

e 8-14x fewer syscalls

 About half the number
of kernel functions
accessed as VMs!

Accessible kernel functions under Nabla policy

Unique kernel functions

700
600
500
400
300
200
100

0

accept I
nabla
block

) l-’l]]]]m
0
0 10
50 100 150 200 250

300

* Trinity kernel fuzz
tester to try to access

as much of kernel as

possible

* Nabla policy reduces
amount of accessible

kernel functions by

98%

Unikernel isolation comes from the interface

* Direct mapping between 10

walltime
hypercalls and system s
call/resource pairs o1l
blkinfo
* 6 for |/O blkwrite
* Network: packet level blkread
e Storage: block level netinfo
netwrite
netread

e vs. >350 syscalls halt

clock gettime
write

ppoll

pwrite64
pread64

write
read

exit group

stdout
net_fd

blk_fd
blk_fd

net_fd
net_fd

SOCC

Implementation: nabla V

* Extended Solo5 unikernel
ecosystem and ukvm

* Prototype supports:
* MirageQOS \ A

* IncludeOS r "4
e Rumprun '

* https://github.com/solo5/solo5

Unikernels

Solo5

Monitors/
tender

Guest unikernel

Ebackends

vt | opensso

-=== Library
interface

—_— HW-
enforced
interface

w
(9]

Measuring isolation: common applications

* Code reachable
through interface is
a metric for attack
surface

e Used kernel ftrace

e Results:
* Processes: 5-6x more
e VMs: 2-3Xx more

Unique kernel
functions accessed

1600
1400
1200
1000
800
600
400
200

process I
ukvm

nabla C—

Measuring isolation: fuzz testing

 Used kernel ftrace

CH 709 accept N
* Used trinity 2 600 nabla
system call fuzzer to = 500 block
try to access more of E 100
the kernel ©
& 300
S 200
e Results: g
: 5 100
* Nabla policy reduces
by 98% over a 0

“ ” 0 20 100 150 200 250 300
normal” process

Measuring performance: throughput

* Applications include:
* Web servers
* Python benchmarks
e Redis
* etc.

e Results:

* 101%-245% higher
throughput than ukvm

Normalized throughput

200%
180%
160%
140%
120%
100%

80%

245
T T T
[] ukvm |
[nabla
B QEMU/KVM i
no 1/0 with 11O -
'] I I T’:q}’i | I i i
> > > = = s S 5
2 2 3 3 2 3 @ @ @ 3 @ 3
S S °® @ R oo x o0 © 5 X 35
5) - @ a o _ @ %) o) 1)
) 3 O | X Qo o) D o} o
g @ = 2 e T T ”
(@) g 3 g D (_j| S
mv)

w
(0¢}

Measuring performance: CPU utilization

e vmex1ts have an effect on
instructions per cycle

* Experiment with MirageQOS
web server

e Results:

* 12% reduction in cpu
utilization over ukvm

(b)

VMexits/ms

(c)

IPC (ins/cycle)

nabla —
ukvm —

5000

10000
Requests/sec

15000

20000

w
(\o]

Measuring performance: startup time

e Startup time is important

for serverless, NFV o w MR S

% 20 0 GMMOOOOU 20 ﬂ} 20

e Results: g o Mo gL esssetpatil
* Ukvm has 30-370% higher ’ ' ’
latency than nabla ?ZZ & GM jzz TZZ
Dl

* Mostly due avoiding KVM T W 50 Meﬂﬁﬂﬂﬁﬁé oI T

Overheads PP PP ® 0 4 6 810121416

Number of cores

